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Rev. d(co(H), E) < 2d(H, E)
Co ) —_ 7 7
@ A.S. (
Conve»
Math. @ closures are weak*-closures taken in the bidual E**;

@ d(A,E):=sup{d(a,E):ac A} for AC E**;

@ d(A,E)=0iff AC E. Hence the inequality implies
Krein's theorem (if H is relatively weakly compact then
co(H) is weakly compact.)
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@ Some of the constant involved are sharp.
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...goals

@ To take the results where (/I think!) they
belong i.e. to the context of C(K) and
RK spaces endowed with Tp;

H” @ To quantify some other classical results
about compactness in C(X) or B1(X).

tools

@ new reading of the classical,

@ for C(X) we use double limits used by
DU Grothendieck;
RX Cod

@ for B1(X) we use the notions of
fragmentability and o-fragmentability of
functions.

B. Cascales Compactness+Distances



C(K) spaces: a taste for simple things
The results Applications to Banach spaces
Results for C(X) and Bj(X) spaces

Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).
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If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).
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ck(H):= sup d(() {h,,:n>m}]R ,C(K))
(hn)aCH  meN

Y(H) :=sup{| Iirr7n|inr1n hm(xn) — Iimmlifr7n hm(xn)| : (hm) C H,(xn) C K},

assuming the involved limits exist.
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Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).

K
ck(H):= sup d(() {h,,:n>m}]R ,C(K))
(hn)aCH  meN

Y(H) := sup{|limlim hp(xn) — limlim hy(x4)| : (hm) C H,(x,) C K},
assuming the involved limits exist.

If H is relatively countably compact in C(K) then ck(H) =0 |
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C(K) spaces: a taste for simple things
The results Applications to Banach spaces

Results for C(X) and B;(X) spaces

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

Y(H) = v(co(H)),
and as a consequence we obtain for H C C(K) that
.\ RK ~ —RK
d(co(H) ), C(K)) <2d(H ", C(K)). (1)

and in the general case H ¢ RX

d(co(A)" ). C(K)) < 5A(H"" . C(K)). (2)
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Results for C(X) and B;(X) spaces

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

Y(H) = v(co(H)),

and as a consequence we obtain for H C C(K) that

d(eo(A)" ), C(K)) < 2a(H™",C(K)). (1)

and in the general case H ¢ RX

d(co(A)" ). C(K)) < 5A(H"" . C(K)). (2)

© Aco(A)"). C(K)) < rlco(H)) = ¥(H) < 2ck(H) < 24(H" . C(K))
@ When H C RX, we approximate H by some set in C(K), then use (1) and

5 appears as a simple
5=2x2+1.
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Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and
f € o/ (K) then

d(f,C(K))=d(f,«(K)).
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@ It is easy to check that

If K is compact convex P
d(f,#~(K)) > f)/2.

subset of a l.c.s. and (f, @~ (K)) = osc(f)/

fe d(K) then @ For x €Y, %, family of neighb.

d(f,C(K))=d(f, 7 (K)). 8> osc(f) > Jenf;/xyszuepu( ()~ f(2))

> inf supf(y)— sup |nf f(z)
Ue yeu Ue, z
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex P
d(f,#~(K)) > f)/2.

subset of a l.c.s. and (f, @~ (K)) = osc(f)/

fe d(K) then @ For x €Y, %, family of neighb.

d(f,C(K))=d(f, 7 (K)). 8> osc(f) > Jenf;/xyszuepu( ()~ f(2))

> inf supf(y)— sup |nf f(z)
Ue yeu Ue, z

f2(x) := sup inf f(z)—i—é
Uew, z€U

B
> inf sup—— =:fi
unh, sup =3 = Al
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢
d(f,«“(K)) > f)/2.
subset of a l.c.s. and (f,7"(K)) 2 osc(f)/
f e o (K) then @ For x e Y, % family of neighb.
F)> inf —f

d(f,C(K)) = d(f,/(K)). 8> osc(f) 2 nf, sup (Fly)~f(2))

> inf supf(y)— sup |nf f(z)

fo L. s. convex U ycu Ue, 2

8
fr(x) := sup inf f(z)—i——
A h affine Ueu, z€U

: )
/ > inf —Z = f
P ol 52 = A

fi . s. concave
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢
d(f,«“(K)) > f)/2.
subset of a l.c.s. and (f,7"(K)) 2 osc(f)/
f e o (K) then @ For x e Y, % family of neighb.
F)> inf —f

d(f,C(K)) = d(f,/(K)). 8> osc(f) 2 nf, sup (Fly)~f(2))

> inf supf(y)— sup |nf f(z)

fo L. s. convex U ycu Ue, 2

8
fr(x) := sup inf f(z)—i——
A h affine Ueu, z€U

: )
/ > inf —Z = f
P ol 52 = A

@ Squeeze h between f; and f; and
Jius. coneave If —hlle < 8/2.
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Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and
f € o/ (K) then

Corollary

d(f,C(K))=d(f,«(K)).

Let X be a Banach space and let Bx: be
the closed unit ball in the dual X* endowed
fal. 5. conves with the w*-topology. Let i : X — X** and
J: X** — £s(Bx+) be the canonical
embedding. Then, for every x** € X** we
have:

fa h affine

/ d(x™,i(X)) = d(i(x™), C(Bx-))-

fi . s. concave
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Measures of weak noncompactness

Given a bounded subset H of a Banach space E we define:

Y(H) :=sup{| IiqunlirT fm(xn) — Iirrmlirrp fm(xn)| : (fm) C B+, (xn) C H},
assuming the involved limits exist,

ck(H):= sup d( h,:n>m
(H) (h)p mQN{ >m)" E),

k(H):=d(H" ,E)= sup _d(x",E),
x**EH
where the w*-closures are taken in E** and the distance d is the usual inf
distance for sets associated to the natural norm in E**.
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) < 2k(H)
Y(H) = ¥(co(H))
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),v(H)
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) < 2k(H)
Y(H) = ¥(co(H))
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),v(H)

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, )
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) <y(H) <2ck(H) <2k(H) <2wn(H),
Y(H) = y(co(H)) and o(H) = ®(co(H)).
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),y(H) and o(H).

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, )
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) <y(H) <2ck(H) <2k(H) <2wn(H),
Y(H) = y(co(H)) and o(H) = ®(co(H)).
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),y(H) and o(H).

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, )
The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From
k(co(H)) < 2k(H) straightforwardly follows Krein-smulyan theorem. J
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Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K).
Let us define

YK(H) = sup{| “,r,‘n “r!;vn fm(xn) - “,;n“,rf' fm(Xn)| : (fm) CH, (Xn) < K}v

assuming the involved limits exist. Then we have

Yk (H) < y(H) <2y (H).
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Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K).
Let us define

YK(H) = sup{| “,r,‘n “nr7n fm(Xn) - “,;nlign fm(Xn)| : (fm) CH, (Xn) < K}v

assuming the involved limits exist. Then we have

Yk (H) < y(H) <2y (H).

Theorem (Gantmacher)

Let E and F be Banach spaces, T : E — F an operator and T* : F* — E* jts
adjoint. Then

YT (BEg)) < UT"(BF-)) < 2¢(T(Be))
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Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence (T,), of operators
Th: E — cg such that

O(T;(Bs)=1  and  o(T;(BE)) < w(Tn(Be)) < -

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator
T :E — F we have
mo(T(B)) < o(T*(Br+)) < Mo(T(Bg)).

Y and @ are not equivalent measures of weak noncompactness, namely there is
no N > 0 such that for any Banach space and any bounded set H C E we have

o(H) < Ny(H).
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The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

X
ck(H):= sup d([) Thin>m}> ,C(X.2)).
(hn)nCH  meN

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,1,). Then, for any f € A% there exists a sequence (fn)n in H such that
(a) 3 (b)
sup d(g(x).f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in ZX.

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,‘tp). Then

k(H) < aAZ,C(X,2)) (§)3ck(H)+28(H‘, C(X,2)) (25ck(/-/).
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The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘CP) we define

X
ck(H):= sup d([) Thin>m}> ,C(X.2)).
(hn)nCH  meN

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,1,). Then, for any f € A% there exists a sequence (fn)n in H such that
(€] 3 (b)
sup d(g(x).f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in ZX.

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,‘tp). Then

k(H) < aAZ,C(X,2)) (§)3ck(H)+28(H‘, C(X,2)) (25ck(/-/).

For the particular case ck(H) =0 we obtain all known results about compactness in Cp(X) spaces. )
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Indexes of fragmentability and o-fragmentability

If X topological space, (Z,d) a metric and f € ZX and & > 0:

Definition

If X topological space, (Z,d) a metric and f € ZX. We define:

o-fragc(f) :=inf{e > 0: f is € — o-fragmented by closed sets}
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If X topological space, (Z,d) a metric and f € ZX and & > 0:

Definition

If X topological space, (Z,d) a metric and f € ZX. We define:

o-fragc(f) :=inf{e > 0: f is € — o-fragmented by closed sets}
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Indexes of fragmentability and o-fragmentability

If X topological space, (Z,d) a metric and f € ZX and & > 0:

@ f is e-fragmented if for every non empty subset F C X there
exist an open subset U C X such that UNF # 0 and
diam(f(UNF)) <g¢;

Definition

If X topological space, (Z,d) a metric and f € ZX. We define:

o-fragc(f) :=inf{e > 0: f is € — o-fragmented by closed sets}
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Indexes of fragmentability and o-fragmentability

If X topological space, (Z,d) a metric and f € ZX and & > 0:

@ f is e-fragmented if for every non empty subset F C X there
exist an open subset U C X such that UNF # 0 and
diam(f(UNF)) <g¢;

@ f is € — o-fragmented by closed sets if there is countable
family of closed subsets (X,), that covers X such that f|x, is
e-fragmented for every n € N.

Definition
If X topological space, (Z,d) a metric and f € ZX. We define:

o-fragc(f) :=inf{e > 0: f is € — o-fragmented by closed sets}
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Quantitative version of a Rosenthal’s result

If X is a metric space, E a Banach space and f € EX then

%O'—fragc(f) < d(f,B1(X,E)) < o-fragc(f).
In the particular case E =R we precisely have

d(F, Bi(X)) = %o—fragc(f).

Theorem

Let X be a Polish space, E a Banach space and H a t,-relatively compact
subset of EX. Then

ck(H) < d(AE", B1(X, E)) < 2ck(H).

In the particular case when E =R we have

JAY, B1(X)) = ck(H).
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fo 1. s. convex

S(f2) = {(2.y) 9 = fala)}

fls
h cont.
fo h affine
fi
U(f) = {(TJ/) Yy < fl(f)}

f1 u. s. concave

Katetov theorem (X normal) .
Hahn-Banach separation theorem
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